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Abstract

In this study, we delve into the exploration of Hermite-Hadamard type inequalities specifically
tailored for stochastic processes with convexity-preserving properties. The primary research
objective is to examine the convexity characteristics of the derivatives of these processes, estab-
lishing new bounds and providing deeper insights into their behavior. Through a systematic
investigation, we aim to expand upon the classical Hermite-Hadamard inequality by incorpo-
rating these unique stochastic processes. By employing a recently introduced fractional integral
operator, the analysis introduces a novel dimension to the study of mathematical inequalities in
the context of stochastic processes.
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1 Introduction

Stochastic processes, integral for modeling diverse dynamic systems and widely applied across
scientific disciplines, possess inherent unpredictability and the capacity to capture complex evolv-
ing phenomena. Consequently, they have become indispensable tools for comprehending and
simulating real-world dynamics. In recent years, a growing interest has emerged in exploring the
convexity properties exhibited by the derivatives of stochastic processes, as these properties play
a crucial role in characterizing the behavior and evolution of such processes.

A significant milestone in this field was achieved by Nikodem in 1980, who introduced the
concept of convex stochastic processes, thereby sparking an extensive investigation into their reg-
ularity properties [13]. Building upon this seminal work, Skowronski [20] made further contri-
butions to our understanding of convex stochastic processes, unveiling results that generalize and
expand upon well-established properties of convex functions [20].

Moreover, the Hermite-Hadamard inequality, a key tool for bounding integrals of convex func-
tions, has been expanded to include various forms of convexity and fractional calculus. For in-
stance, it has been adapted to nonlocal conformable fractional integrals, enhancing its applications
in complex systems [17]. It has also been applied to n-polynomial exponential-type convexity,
which is particularly useful for differential equations [2]. Additionally, Hermite-Hadamard-type
inequalities have been linked to the Zipf-Mandelbrot law, illustrating applications in information
theory [4]. Fractal-fractional parametric inequalities further extend its relevance in fractal analysis
[3]. Lastly, applications of generalized fractional operators offer tools for multiscale engineering
problems [5].

Recent studies have showcased the promising potential of extending this inequality to encom-
pass convex stochastic processes [11, 15]. For example, symmetrized stochastic harmonically
convexity and harmonically convex stochastic processes have yielded new Hermite-Hadamard
type inequalities, expanding their applications in stochastic contexts [12, 14]. Additionally, sym-
metrized convexity and strongly convex processes provide refined bounds, enhancing under-
standing of convex behavior in stochastic frameworks [10, 7]. Finally, s-convex stochastic processes
reveal unique Hermite-Hadamard inequalities, further advancing this field [18].

1.1 Objectives of the study

This article embarks on exploring Hermite-Hadamard type inequalities tailored specifically for
stochastic processes [9]. Through a comprehensive study, our objective is to broaden the scope of
the classical Hermite-Hadamard inequality for stochastic processes, as presented in the following
theorem:

Theorem 1.1. For any (u,v) € I2,if S, : T x € — R is both Jensen-convex and MS-C on Z, then the
following statement is true:

vV—p
(see [16]).
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1.2 Preliminary concepts
1.2.1 Stochastic processes

Consider an arbitrary probability space (£,7,P). A function R, : £ — R is designated a
random variable if it is 7-measurable. Extending this concept, a function S, : Z x £ — R, where
Z C Rdenotes an interval, is referred to as a stochastic process. For each 7 € Z, the function S, (7, -)
is thereby a random variable.

A stochastic process, denoted as S,(7,-) : T € Z, represents a collection of random variables
parameterized by a common probability space (€, T, P), where 7 is interpreted as time. The nota-
tion S, (7, -), or equivalently S, (7, w) for w € &, signifies the state or position of the process at time
T.

For a specific outcome w within the sample space £, the mapping 7 — S, (7, w) characterizes a
realization, trajectory, or sample path of the process. When 7 is held fixed within the interval Z, the
mapping depends solely on w, rendering it a random variable. It follows that S, (7, w) undergoes
random variations over time.

In this context, we narrow our focus to continuous-time stochastic processes, wherein the index
set is defined as Z = [0, o0].

Before delving deeper into the properties and characteristics of these processes, let’s begin by
establishing clear and fundamental definitions that will serve as the foundation for our study.

Definition 1.1. [19] S, : T x £ — R is recognized as:

1. Stochastically continuous over I, ensuring that for each xo € Z:

P— lim S,(x,") =S, (x0,°)> (2)

X—Xo
P — lim being the limit in probability, [19].
2. Mean-square continuous (MS-C) throughout I, provided that for every xo € ZL:

i B[ (8,000 -5, (00) | =0 @)

X—X0
E[S,(z, -)] denote the expected outcome of the random variable S, (x, -).

3. Mean-square differentiable (MS-D) at a point x € T is ensured when the derivative S, : £ — R is
well-defined as follows:

Vxo €Z: lim F
X—Xo0

[Sp(x, ) = Sp(x0,°)

L —%u»}zo (4)

Definition 1.2. [1] Consider a stochastic process S, : I x & — R where E [S,(x;-)?| is finite for all
x €L

Let xo = p, Xn = vand xx—1 < xi, forall k € {1,...,n} be a partition of the interval [u;v] C T such
that Sk € [Xk—1; X&)
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A random variable R, : € — R is termed mean-square integral (MS-I) of the process S, over [u; V] if the
following condition holds:

k=n 2
Jim B [(Z S (6107 (7= 711) — m) ] -0, ®
k=1

for every normal sequence of partitions of [u; v] and all ¢, € [xk—1; xk] for k = 1,...,n. Furthermore, we
define:

w() = | " 8,06 Y. (6)

These preliminary concepts lay the foundation for our exploration of the Hermite-Hadamard
type inequalities for convex stochastic processes.

1.2.2 Definitions

We recall a number of definitions for convex stochastic processes.

Definition 1.3. [13] A stochastic process S, : T CJ0,00[xE — R is convex if the inequality for all
w,v €L CJ0,00[, p € Rand X € [0, 1], holds:

S([Mae+ (1= 0]} SAS, (1) + (1= NSy(w:9) (7)

Definition 1.4. [6] A stochastic process S, : T C|0,00[xE — R is termed p-convex if the following
inequality holds almost everywhere for all p,v € Z C]0,00[, p € R, and X € [0,1],

([P + (1= 7] 7,) S ASy( ) + (1= NS, ). (8)

Remark 1.1. The convex stochastic process is a particular case of p-convex for p = 1.

Definition 1.5. [8] A stochastic process S, : T CJ|0,00[xE — R is termed geometric-convex if the
inequality holds for all i,v € T and T € [0,1],

S, (V' 70) < (S0 )] T[Sy )] ®)

Definition 1.6. [8] Let m be a constant in the range |0, 1], and S,(p, -) be a positive stochastic process on
the interval [0, ¢]. Sp(u, -) is termed m-geometric-convex on the interval [0, (], if the inequality holds for all
w,v €[0,¢]and T € [0,1],

1—7

1—-7)

Sp </‘T’/m(1_7)") < [Sp(ﬂa‘)]T[Sp(Vv')]M( (10)

Definition 1.7. Let (o, m) be a pair of constants within the range 0, 12, and S, (u, -) be a positive stochas-
tic process on the interval [0, (]. Sp(w, ) is (o, m)-geometric-convex over the interval [0, ¢]. If the inequality
is verified for all pi,v € [0,(] and T € [0, 1],

o (1)

8y () < [ ]

Definition 1.8. [6] For a stochastic process S, : T C [0, 00] x € — Ry, where T is an interval, it is termed
s-geometric-convex for some s € [0, 1] if the inequality holds for all 1,v € T and T € [0, 1],

Sp (W) < [Sp(, )] [Spw )]

(11)

1-7)°

(12)
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2 Main Results

For any function ¢ : Ry — R4 and for given p,v,& € Ry and a,m € [0, 1], we establish the
following:

Yiuwr = % (13)
@)
=4 0<&<1,
Cls€) = {1_% o "
v—p
o {m_lnﬂ L (15)
4, —
and
2\v
NN ,
®(p,v) = o — g SV V) = VEL i (16)
57 n=v.

Lemma 2.1. Consider S, : T C Ry x & — R as a stochastic process that is mean-square differentiable
(MS-D) over I° (the interior of T) , and let ju,v € I° with 0 < p < v. If S, is mean-square integrable
(MS-I) on [, V], then,

1 v SP(X7') _ 7. -
111(1/)111(#)/u v xSl

= M /1 T[M§V1_581/,<u5u1_
0

SR
N—
|

=
—
vl
A
]
2
oS
=
—
|
3
~
)
AS
[ME)
~
o,
\‘

4

1

Proof. By implementing the variable transformation y = p!~2v2 with0 < 7 < 1, into the equation

(x), we obtain:
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Similarly if y = p2v!~% for 7 € [0, 1] in (x*), we get:

In(v) —In(u) [ ToA-Tor(, 5 1-% |
f/o TUZv 2§ ([L vz, )dT
——/17'[8'( Tyl=z )} d
- j2 2 ’ T,

0

1 1
:—[TS,,(/ﬁul_f,-)} +/0 Sp(;ﬁyl_%,-)dT (%),

0

_ Va2 S
=S+ g L O

Thus, Lemma 2.1 is successfully established. O

A straightforward calculation utilizing the preceding lemma yields the following results.

Lemma 2.2. If i, v > 0and pn # v, then the following equalities are true:

/01 ruiioE dT—%[A(\/ﬁ,ﬁ) —Jﬁ} (18)

S lnv—lnp

and
(19)

A(p, v) being defined in (15).

Using these results, we can derive certain Hermite-Hadamard type inequalities for stochastic
processes whose derivatives exhibit geometric convexity, m- and («a, m)-geometric convexities, as
well as s-geometric convexity.

Theorem 2.1. S, : Z C Ry x & — R is a MS-D stochastic process on Z°, and p,v € Z° with 0 < p < v.
Forall a,m €]0, 1], if S}, is MS-I on [y, v], then we have:

1 YSp) =
ln(V)—ln(u)/# X dx S”(\/AT’)’

< 1000 {5 (s, plsionl))

with A(u, v) being defined in (15).

(20)

Proof. By utilizing Lemma 2.1, the fact that |SII’(X’ 9| is (a,m)-geometric convex on [y, v], and
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Lemma 2.2, we get:

1 Y Spx) =
1n(V)—1n(u)/,L X = SV, )’

In(v) ; In(x) /01 ’ [Mng_;

< ol /{ sy ) o1yl ] ™ + fulsyenl] [uns;w,ou;}w

2020 i) ] )}

With this, we complete the proof of Theorem 2.1. O

Theorem 2.2. Let S, : Ry x & — R be a MS-D stochastic process on R, (o, m) €]0,1]?, and S}, is MS-I
on [p,v] for p,v € Ry with 0 < p < v. If |S}(x,-)| is (e, m) geometric-convex on {O,max{y,u%”,
then,

1 v SP(X?') _ 7.
ln(V)ln(u)/u X = SV )’

< BT s () s o (1251 ) o

< 7 .
1 m ¢S, v «
S (Mm,.)' VSLL,(H | |u,u)¢(1,/i]8,’,yy,“) }

, C(a; &) and ®(p, v) are previously defined in (14) and (16).

+

where |SI/}|# ,

Proof. Using the fact that S,, is (v, m)-geometrically convex on the interval {O, max{v, y%}} , we
obtain the following:

8, (A2 < S| "

(22)
1 (%) 1 (e Sp %
= 81/7 (UW, ) ’SII) v SZI) (ym7 )‘ |Sz/)‘u)(y | ‘[ )+
and
~5,5% 137 €
1 2 2 . . . z
1= o) kg o
" : 5" s eledsil )
—|s (ym,.) |Szl7’(w) <ls/ (um,)‘ ’3“5’(“ DIWRES 3

forall 7 € [0,1].
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Using the results of Lemma 2.1, Lemma 2.2, we get:

1 S0y g
ln(V)—ln(u)/,L x S"(W’)‘

1
< o) = In(y) ;1“(“) X/O EE |8 (E e E )+ E U |8 (i E R, )l

In(v) —In(p) [* LN el ) (Y ere )P

<2200 Ll (b)) (K1)
1 m ¢S, v @ 2

s (b ) IS (K1, ) o

In(v) — In(g) s\ el Ve

= 2R uls, (v )i @ (125 )
1 m Ca;S; v o

s; ()M sp D e (12151 )

which conclude the demonstration of Theorem 2.2. O

+u

+u

Corollary 2.1. Considering the given conditions in Theorem 2.2.

1. For o =1, we get:

I R P
ln(V)—ln(u)/u v e silvim ’)‘

< B ls (v )"0 (17153, -

- 4
()"0 (12 151.,) |

14

+p

2. Form = a =1, we get:

1
In(v) — In(y)

In(v) — In(u) ¢(asls) v a
< 4{v 53] sy %) @ (1, 2 155l ) (25)

14 a

/M Sbbed g sp<\/w,->\

. !
a,|8p

S0

3. In the case where o = m = 1, we get:

i N PR
1n<v>—1n<u>/ﬂ v S ’)’

R NN ERAET B

Corollary 2.2. Considering the given conditions in Theorem 2.2,

(26)
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5 (1)

1. Provided that: | S (y,-)| < " we get:

S, (v, )| and |Sj(w,)] <

| S0 sl
hl(V)—ln(u)/H v S ’)’

< B {1 )0 (121501, )

sy ()Mo (121831, ) |-

- 4
2. Assuming that: |S)(u,-)| < |S}, (1/%, .)‘m and |S)(v, )| > |8, (Mi, ) " we get:
1 Y SP(X? )
In(v) — In(p) /, x XS ')’
In(v) — In(u) 1\ ™ v o
< N S, (ym , )‘ ) <1, m |SI’7|M,) (27)
+ 1S, (ﬁy ) ’m |3{7|Za ) (1: |Sz’,]3u) ] :

3. Given that: |S)(p,-)| >

8y (v, )| and |S}(w,)] <

81/7 (uﬁ, )‘ , we get:

1 7S )
In(v) —In(y) /,L xS, ')’
In(v) — In(u) 1\ ™ —a v a
<BOTRWL s )glre (LSE) e
(T

4. In the case where: |S) (11, ")

>

8y (v, )| and |} (w,)] =

SZ’, (u%, ) ‘ , we get:

1 " Sp(x0)
IO AR
In(v) — In(u) PIVAE T WL Voo
= Sp (Vm ' )‘ |Sp‘/,1,,1/ o (17 M |Sp|u,u> (29)

= 4
N m l1—a v @
s, (u )| sy @(wsé’w)]'

Theorem 2.3. Consider the stochastic process S, : T C Ry x £ — R as an MS-D process on I°, where

S/ is MS-I on [, v) for p,v € I° with 0 < p < v. If |S)(x, )| is s-geometric-convex on [y, v] for some
s € (0, 1], we get:

14

+p

1 VSP(X?') o 7. .
(ln(V)—ln(u))/u v sV ’)‘

< (ln(V) ; IH(IJ)) |S;/)(Ma _)|C(s;|8;(u,~)|) |81/7(l/, .)|C(s;|8;(v,~)|) % (3())

1 sl 2
{a(elspu 1 s 17)}
where ((a; ) and A(p, v) are respectively defined as in (14) and (15).
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Proof. Utilizing the fact that ‘Szla(x’ )| is s-geometric convex over the interval [u, V], we have

83 (w575, <[83000] |S’ 2l
< SI/;(H7)‘5(S7|S;(M’)|) R |/B |S (v, )|)+O‘(1_§) (31)

|
— |8 (, )| 150D ns,: - | 151800, | PG (180, 7 F
and

55 50 < s sl
< Sp ‘5 |S I, )|)+a(1 ’S, ) | (S§|S;(V,-)|)+% (32)

‘5 5387 (1)) HS/ ‘ ] |3;(V7,)|5(s;|8;(vw)\) [|$;(y,-)|s]%7

By employing the results of Lemmas 2.1 and 2.2 as well as the inequalities (31) and (32) we
get:

1 v Sp(Xv')
In(v) — In(u) /H X = Splvir )
B 1
< In(v) ; In(s) /0 - [ugylfg |S;, (ngkg,'” +ulEyE |$1/9 (upgyg")u dr
< In(v) 41 ‘S’ ’C (558, (1)) ’S’ |C(s;|$;(l/v)\)

< [y [u|s;<u7->r]1‘%+[u\s;m,-)ml‘% ISy (0,)[")F ar
0

= @) =) g, et ED 1510,

(33)
O
Corollary 2.3. Considering the given conditions in Theorem 2.3, we have:
1. If |S) ()| < 1and |S)(v,-)| <1, then,
1 /“ Sp(x: ) ‘
dxy — S, (v, -

IH(V) _]n(,u) m X P( a ) (34)

In(v) — In(u) s71/2 s11/2\ ) 2

< RN (s 17 s 1) )

1 /" Sp(x: ) '
dy — S, (v, -

hl(”) - ln(:u’) I X P( ) (35)

< In(v) —
- 4

9 sy (It 12 sy 1)

860



Y. Laarichi et al. Malaysian ]. Math. Sci. 18(4): 851-865 (2024) 851- 865

3. If[S) (v, )| <1< |S)(p, )|, then,

1 CSpx) oo .
ln(l/)ln(/t)/“ x X S”(\/’T’)’ (36)

n(v) —In —s / s11/2 / s1/2\1?
< B0 1o L (G ks ]2 ISyl 1) )

4. If [S)(p, )| > Land |S)(v,-)| > 1, then,

- im(u) /M” Sp(;o ) dx - S, (i, -)’
< 2R 151y 00] = (s (Tl 2 kS0 ) )
(37)
5. If s = 1, then,
- iln(u)/u sp(;:,-) dx—Sp(\/Wf)‘ 38)
< DL LA ([ fsyn )72 o fspn ) )Y

Theorem 2.4. Consider a (v, m)-geometric-convex stochastic process Sp : RoxE — Ry on {0, max {1/, v H
and S, is MS-Ton [u,v] for 0 < p < v and (o, m) € (0,1]?, then,

T, e o
n(v) —In(u) J, X
< mm{ [, ()] sl A ([s, ()] IS 0) . (a9

o o))" (o f )] |

where Sy (.., ((a; §), and A(p, v) are defined in (13), (14), and (15).

Proof. For x = p'~"v™ for 7 € [0,1] and using the (o, m)-geometric convexity of S,(x,-) on

{0, max {zx, v } we get:

Y S,(x, 1 o
ME STl A A TS L
1 e
-
< {Sp (M#, .)}m/ol S;((:;S)P(V,u))"l‘aT dr

=[5 ()] s ([ ()] [se] ).

The demonstration of Theorem 2.4 has concluded. O
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Corollary 2.4. Considering the given conditions in Theorem 2.4;

1. For a =1, we get:

1 " S )
1n(1/)—1n(u)/u X R (40)

coin i ([5 ()] 900)-8 (500, 5, ()] )

2. Incase if m = 1, (42) becomes:

1 v SP(Xa )
IMWMWLA x X

—a oSS,
sty (41)
< min (os5r) A (S5 (1), Sy (v, ) -
l—« QOp (,v
(S )] " Sy

3. Assuming that oo = m = 1, we get the following result:

1 Y SP(X7') ] "
mm—mmL 2y < A ().8,(0), (2)

Theorem 2.5. Consider Sy,1 and Sy as (c., m)-geometric-convex stochastic processes on [O, max{0, v }} ,
if Sp1 and Spo are both mean-square integral (MS-I) on [, v], where (a,m) € [0,1])% and 0 < p < v, then:

1 /V Spl (Xv ')Sp2(X7 ) dX
n

In(v) —In(p) X

. 1 1 m(l-a)
< min {(3p18p2)555’(5p15p2)”‘”) {Spl (M m, ) sz(lﬂt ) )}

A ([ (%) Syl )] S0 )Spa(0))7) (43)

; 1 1 m(l—a)
(Sp18p2)i€3’(3p13p2)u,u) [Spl (l/'rln , ) SpQ(V’}L , )i|

x A ([Sp1 ()82, [Sr (v77,-) S, )] )}
where Sy, ((; §), and A(p, v) are respectively defined as in (13), (14), and (15).
Proof. To demonstrate this theorem, we employ a similar methodology to that utilized in proving

Theorem 2.4. 0

Corollary 2.5. Considering the given conditions in Theorem 2.5,
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1. For oo = 1, we get the following result:

1 v Spl (X? ')SpQ(Xa )
o, x X

< min {A ([Spl (u%,.) Spa(pm, .)}m S (v, ) S (v, _)> 7 )
A (Spl(“")‘sﬂ(/‘v')v [‘Spl (Vﬁl’) 5p2(1/%,‘)]m) }

2. Provided that m = 1, (46) becomes:

1 " Sp1(X ) Sp2(X;+)
In(v) — () / x X

{ (SpnSpa)iti ) (S0 (1, ) Sy ()] }
< min

(815,950 (Sp1852)u) [Sp (¥, )Spa (v, )] 1=a

A ([0 )82, )] [Sp1 ()82 ()] ).

3. Assuming that o = m = 1, we get:

1 Y Sp1 (X )Sp2 (X, )
oG, T A A8 )0, S8 () - (49

Theorem 2.6. If S, : T C Ry x & — Ry are s-geometric-convex stochastic processes on Z° for s € (0, 1],
v € L° with 0 < p < v and if Sp, is MS-I on [, V] the following inequality is valid:

Sy(
/ (46)

< [Sp( L, )]C(SS p(1:7)) [SP(V,-)]C(&SP(V,‘))A(S;(M,') SS(V7'>>7

L 4

where ((cv; €) and A(u, v) are previously defined in (13), (14), and (15).

Proof. If we put x = p'~"v7, for 7 € [0, 1] and utilizing the s-geometric convexity of S,(x,-) on
(i, V] give,

1 VSP(X") _ ! =77 . ' . (1-7)° v s .
ln(V)—ln(,u)/M N dX—/O Sp (n'7v7,-)d </0 [Sp(u )] [Sp(w, )] dr (47)

1
C(s,Sp(py))+s(1—7 C(s,Sp(v,-))+st
</O [Sp(m-)}( (1)) +s( ’[sp(y,-)]( (o )+st g (48)

_ [Sp(,u, )} ¢(s:8p (1)) [Sp(y, )] C(S’Sp(%.))A(S;(/J, ) SS(Z/, )) ) (49)

’TP

The demonstration of Theorem 2.6 has concluded. O
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Theorem 2.7. Let Sp1,Sp2 : T C Ry x & — Ry be s-geometric-convex stochastic processes on I° for
s€(0,1], v € I° with 0 < p < v and Sp1 and Sy are MS-1 on [, v, then,

1 " Sp1(X ) Sp2(X; -)
() — In(p) / Y X (50)
)

< [Spr (1, )Spalpr, )]SI N (g (1) )8 (0, )] (S DS D) (51
x A ( [Spl (,ua ')Sp2(u7 )} 87 [Spl (1/, ')SpZ(V» )] S)) (52)

where ((o; €) is defined in (14) and A(u,v) in (15).

Proof. To demonstrate this theorem, we employ a similar methodology to that utilized in proving
Theorem 2.6. O

3 Conclusion

This study has delved into the exploration of novel inequalities of Hermite-Hadamard type
specifically tailored for positive convex stochastic processes. Through the utilization of a recently
introduced fractional integral operator, we have added a distinctive dimension to the analysis of
stochastic processes, thereby contributing significantly to the development of mathematical in-
equalities in this context. This research opens avenues for further investigations and applications
within the realm of stochastic processes with convexity-preserving properties, offering valuable
insights into their behavior and potential applications in various fields.
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